The European powerful online platform with manufacturers and suppliers of pressure equipments​

pressure equipments plant

ISO/TR 15608 ISO/TR 15608 Material Group 6.4

ISO/TR 15608 Material Group 6.4: Steels such as material X10CrMoVNb9-1 with
7,0 % ≤ Cr < 12,5 %, 0,7 < Mo ≤ 1,2 % and V ≤ 0,35 %;

High-temperature martensitic steels above 7% Cr in CrMo steels leads to a group of steels containing martensite. This microstructure introduces a new element of structural hardening. Martensite is characterized by a high dislocation density and a fine lath structure stabilized. This structural hardening is responsible for the large increase in the high creep-rupture strength of e.g. X10CrMoVNb9-1. Further improvements, especially of the creep strength, have been achieved by alloying with vanadium, niobium, tungsten and boron. The modified 9 % Cr steel X10CrMoVNb9-1 (T91 & P91) is now used in power plants all over the world, both in new plants and in refurbishment work of high-pressure/high-temperature piping systems. Subsequently, new steel grades like X11CrMoWVNb9-1-1 (T911 & P911), developed based on T91 & P91. These grades represent the current state of development for creep-resistant ferritic steels.

Weldability of chromium-molybdenum alloyed steels ISO/TR 15608 Material Group 6.4 such as X10CrMoVNb9-1

The chromium-molybdenum alloyed heat-resistant steels are generally welded with a preheating suitable for the steel grade and wall thickness in question e.g. 150 -300 °C. The working temperature should not reach 350°C. After welding, these steels generally have to be annealed e.g. 730 – 760 °C. Before the necessary tempering annealing (740 – 760°C), intermediate cooling to room temperature is required in order to achieve complete martensite transformation.

The filler metals used are essentially alloyed grades of the same type. Only under these conditions can the welded joint be expected to have the same creep rupture strength as the base material.
As the welding technology has a significant influence on the achievable toughness properties in the weld metal, the use of multi-layer technology, i.e. low layer thickness, is recommended in order to achieve a high proportion of tempered weld metal structure and thus an improved toughness level.

Typical materials in group 6.4

Name/GradeNumberStandardProductRemarks/Trade Marks
X10CrMoVNb9-1
X10CrMoVNb9-1
X10CrMoVNb9-1
X10CrMoVNb9-1
F91
T91
WP91
P91
F91
FP91
91, Cl. 2
1.4903
1.4903
1.4903
1.4903
K90901
K90901
K90901
K90901
K90901
K90901
K90901
EN 10028-2
EN 10216-2
EN 10222-2
EN 10253-2
ASTM A-182
ASTM A-213
ASTM A-234
ASTM A-335
ASTM A-336
ASTM A-369
ASTM A-387
Plate
Smls. tube
Forgings
Fittings
Forging
Smls. tube
Fitting
Smls. pipe
Forging
Forged pipe
Plate
EN 13445-2 & EN 13480-2
EN 13445-2 & EN 13480-2
EN 13445-2 & EN 13480-2
EN 13445-2 & EN 13480-2
ASME BPVC
ASME BPVC
ASME BPVC
ASME BPVC
ASME BPVC
ASME BPVC
ASME BPVC
X10CrWMoVNb9-2
X10CrWMoVNb9-2
F92
T92
WP92
P92
F92
FP92
92
1.4901
1.4901
K92460
K92460
K92460
K92460
K92460
K92460
K92460
EN 10216-2
EN 10253-2
ASTM A-182
ASTM A-213
ASTM A-234
ASTM A-335
ASTM A-336
ASTM A-369
ASTM A-1017
Smls. tube
Fittings
Forging
Smls. tube
Fitting
Smls. pipe
Forging
Forged pipe
Plate
EN 13445-2 & EN 13480-2
EN 13445-2 & EN 13480-2
ASME BPVC
ASME BPVC
ASME BPVC
ASME BPVC
ASME BPVC
ASME BPVC
ASME BPVC
91K91560ASTM A-691Fusion welded pipeASME BPVC
X11CrMoWVNb9-1-1
X11CrMoWVNb9-1-1
P911
1.4905
1.4905
EN 10216-2
EN 10302
Smls. tube

EN 13445-2 & EN 13480-2
EN 13445-2 & EN 13480-2
X20CrMoV11-1
X20CrMoV11-1
X20CrMoV11-1
1.4922
1.4922
1.4922
EN 10216-22
EN 10222-2
EN 10253-2
Smls. tube
Forging
Fitting
EN 13445-2 & EN 13480-2
EN 13445-2 & EN 13480-2
EN 13445-2 & EN 13480-2
X22CrMoV12-11.4923EN 10269FastenersEN 13445-2 & EN 13480-2
GX23CrMoV12-1
C12A
12A
C91
1.4931
J84090
J84090
J84090
EN 10213
ASTM A-213
ASTM A-356
ASTM A-1091
Casting
Casting
Casting
Casting
EN 13445-2 & EN 13480-2
ASME BPVC
ASME BPVC
ASME BPVC
Table: Typical material